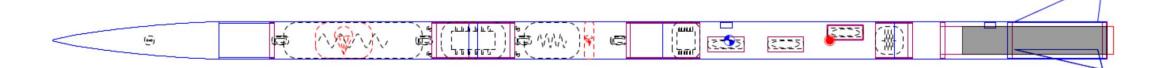
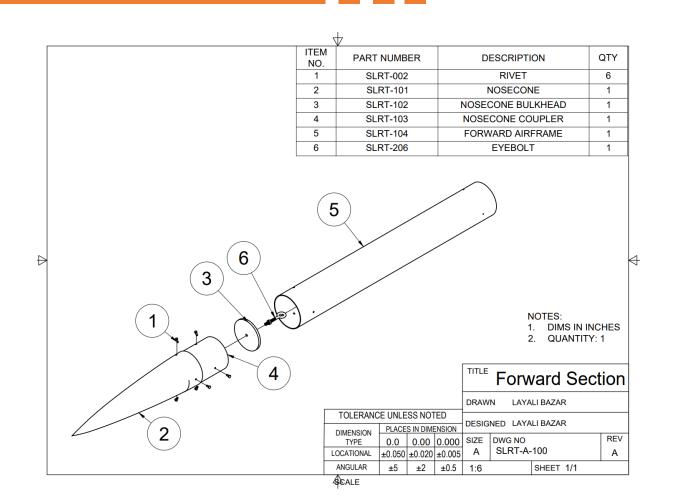


Vehicle Dimensions

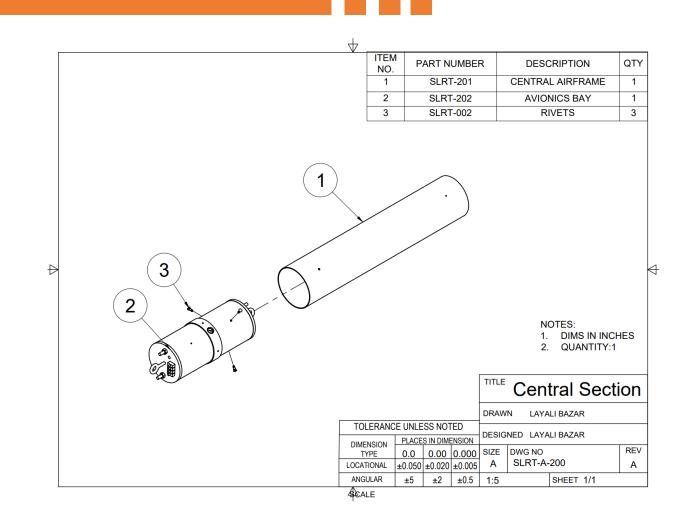


Section	Exterior Length (in)	Overall Mass (oz)
Forward	45	77.9
Central	21	74.0
Aft	49	246.1
Total	115	398.0

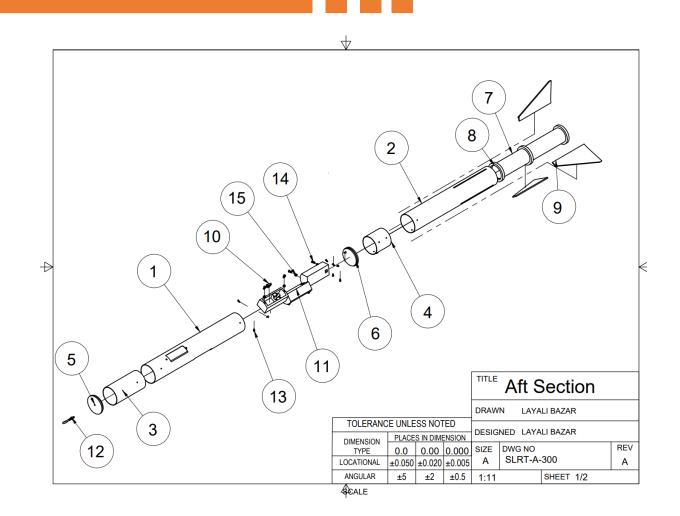
Leading Design


Sections

- Forward Section
 - Nosecone and Forward Airframe
- Central Section
 - Avionics Bay and Central Airframe
- Aft Section
 - Payload Airframe, Aft Airframe, Fins, and Motor Assembly


Forward Section

- 4-4.5 Von Karman Nosecone
- Nosecone Shoulder
- GPS
- Bulkhead
- Eyebolt
- Forward Airframe


Central Section

- Central Airframe
- Avionics Bay

Aft Section

- Payload Airframe
 - Contains 3 Payload Housings
- Aft Airframe
 - Motor Assembly
 - Motor Tube
 - Centering Rings
 - Fins

Nosecone Material Selection

Nosecone			Polypropylene			G12 Fiberglass		
Objective	Weighting Factor	Parameter	Mag.	Score	Value	Mag.	Score	Value
Cost	0.10	USD	24.75	10.0	1.00	75.90	3.3	0.33
Density	0.30	lb/in³	0.03	4.9	1.48	0.067	10.0	3.00
Tensile Strength	0.60	ksi	6.50	0.6	0.34	115	10.0	6.00
Overall value				2.82			9.33	

Airframe/Coupler Material Selection

Airfr	ame			Blue Tube		G	12 Fibergla	SS
Objective	Weighting Factor	Parameter	Mag.	Score	Value	Mag.	Score	Value
Cost	0.17	USD/in	0.92	8.04	1.34	2.12	3.49	0.58
Density	0.17	lb/in³	0.05	10.00	1.67	0.07	6.19	1.03
Compressive Strength	0.50	ksi	4.28	1.43	0.71	30.00	10.00	5.00
Machinability	0.17	experience	good	8.00	1.34	okay	6.00	1.00
Overal	l value			-	5.1			7.6
Airfr	ame		Phenolic			Quantum Tube		
Objective	Weighting Factor	Parameter	Mag.	Score	Value	Mag.	Score	Value
Cost	0.17	USD/in	0.74	10.00	1.67	0.87	8.51	1.42
Density	0.17	lb/in³	0.05	9.83	1.64	0.05	9.42	1.57
Compressive Strength	0.50	ksi	13.50	4.50	2.25	18.20	6.07	3.03
Machinability	0.17	experience	good	8.00	1.34	good	8.00	1.34
Overal	l value			_	6.9	_		7.4

Motor Tube Material Selection

Moto	r Tube			G12 Fiberglass		В	lue Tube	
Objective	Weighting Factor	Parameter	Mag.	Score	Value	Mag.	Score	Value
Cost	0.17	USD/in	1.20	3.33	0.56	0.40	10.00	1.67
Density	0.17	lb/in³	0.07	6.87	1	0.06	7.80	1.30
Compressive Strength	0.50	ksi	37.10	10.00	5	5.08	1.37	0.68
Machinability	0.17	experience	fair	4.00	0.67	good	8.00	1.34
Overal	l value				7.37			4.99
Moto	r Tube		Phenolic					
Objective	Weighting Factor	Parameter	Mag.	Score	Value			
Cost	0.17	USD/in	0.71	5.63	0.94			
Density	0.17	lb/in³	0.05	10.00	1.67			
Compressive Strength	0.50	ksi	13.50	3.64	1.82			
Machinability	0.17	experience	fair	4.00	0.67			
Overal	l value				5.10			

Bulkhead Material Selection

	Bulkhead		Struct	ural FRP Fibe	erglass		Plywood	
Objective	Weighting Factor	Parameter	Mag.	Score	Value	Mag.	Score	Value
Density	0.22	lb/in³	0.06	3.3	0.7	0.02	10.0	2.2
Tensile Strength	0.56	ksi	18.50	10.0	5.6	9.20	4.3	2.4
Machinability	0.22	experience	Fair	4.0	0.9	Fair	4.0	0.9
Cost	0.11	USD/ft ²	27.89	1.50	0.2	20.41	10.00	1.1
	Overall value				7.3			6.6
	Bulkhead			Type II PVC				
Objective	Weighting Factor	Parameter	Mag.	Score	Value			
Density	0.22	lb/in³	0.05	3.9	0.9			
Tensile Strength	0.56	ksi	6.15	6.7	3.7			
Machinability	0.22	experience	Great	10.0	2.2			
Cost	0.11	USD/ft ²	8.42	4.90	0.5			
	Overall value				7.4			

Centering Rings Material Selection

USD/in²

ksi

mins

0.10

0.30

0.30

Overall value

Cost

Shear Strength

Machinability

Centering rings			Structural FRP Fiberglass			Plywood		
Objective	Weighting Factor	Parameter	Mag.	Score	Value	Mag.	Score	Value
Density	0.30	lb/in³	0.06	3.3	0.99	0.02	10.0	3.00
Cost	0.10	USD/in ²	4.67	0.7	0.07	0.31	10.0	1.00
Shear Strength	0.30	ksi	21.50	10.0	3.00	2.00	0.9	0.28
Machinability	0.30	mins	13.00	3.8	1.15	5.00	10.0	3.00
	Overall value				5.2		•	7.3
	Centering rings		Ту	pe II PVC				-
Objective	Weighting Factor	Parameter	Mag.	Score	Value			
Density	0.30	lb/in ³	0.05	4.0	1.21			

2.18

1.50

25.00

4.7

0.7

2.0

0.47

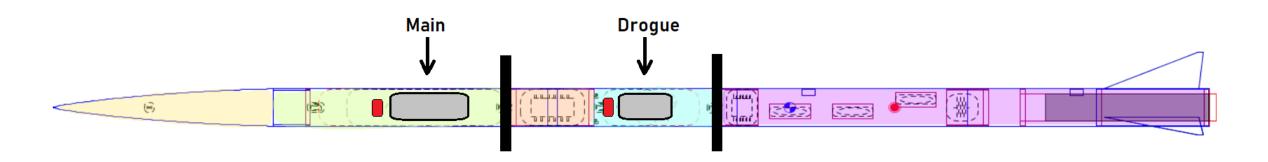
0.21

0.60

2.5

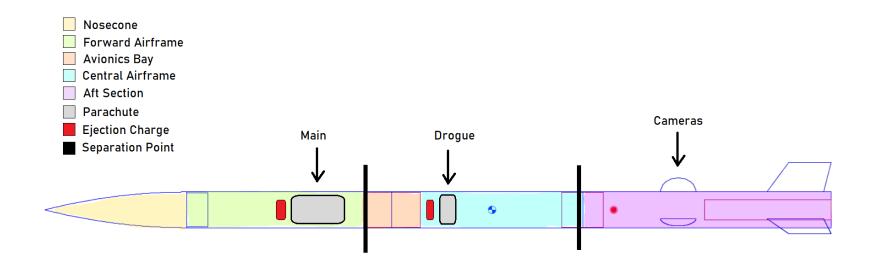
Fins Material Selection

Fins			Structural FRP			Plywood		
Objective	Weighting Factor	Parameter	Mag.	Score	Value	Mag.	Score	Value
Shear Strength	0.33	ksi	21.50	10.0	3.3	2.00	0.9	0.3
Cost	0.17	USD/ft ²	27.89	1.5	0.2	4.10	10.0	1.7
Density	0.17	lb/in³	0.06	4.0	0.7	0.02	10.0	1.7
Impact Strength	0.33	ft-lb/in	8.00	6.7	2.2	3.70	3.1	1.0
O	verall value				6.5			4.7

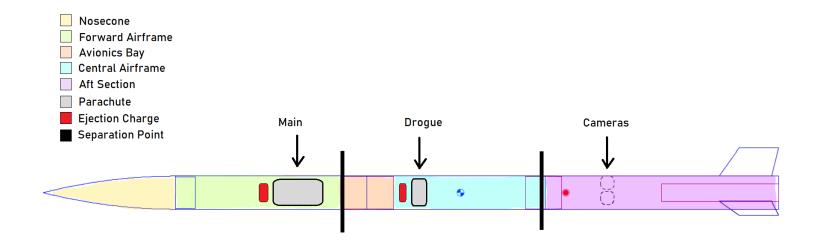

	Fins		G	10 Fiber	glass		
Objective	Weighting Factor	Parameter	Mag.	Score	Value		
Shear Strength	0.33	ksi	21.50	10.0	3.3		
Cost	0.17	USD/ ft ²	62.75	0.7	0.1		
Density	0.17	lb/in³	0.07	3.7	0.6		
Impact Strength	0.33	ft-lb/in	12.00	10.0	3.3		
0	Overall value						

Separation Points

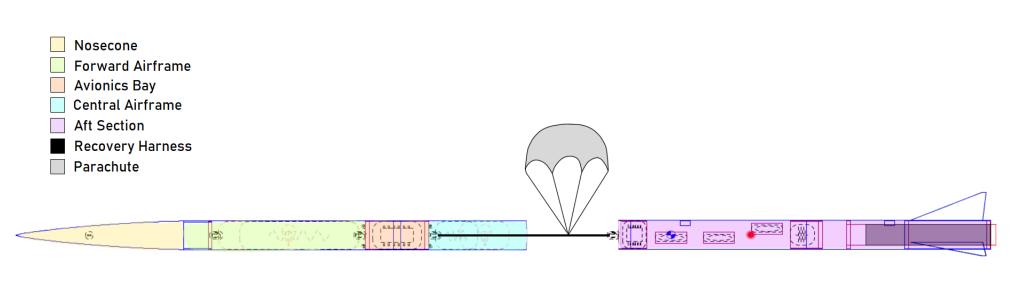
Nosecone	Aft Section
Forward Airframe	Separation Point
Avionics Bay	Parachute
Central Airframe	Ejection Charge


Component		Description
Main Ejection	Primary	2.5 g at 600 ft AGL
Charge	Secondary	3.1 g at 550 ft AGL
Drogue Ejection	Primary	1.6 g at apogee
Charge	Secondary	2.0 g at 1s after apogee

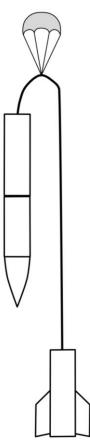
All ejection charges are black powder

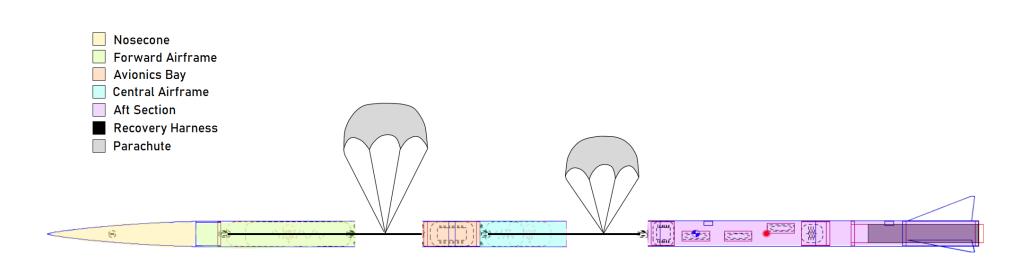

Alternative Designs - Externally Mounted Cameras

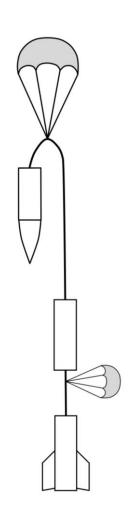
- Three cameras, each aligned with a fin
- Clear cover over the camera



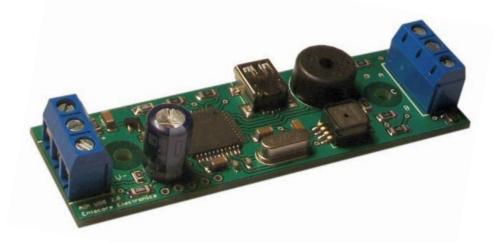
Alternative Designs - Linear Extension


- Three cameras, each aligned with a fin
- Camera raised by linear actuators radially

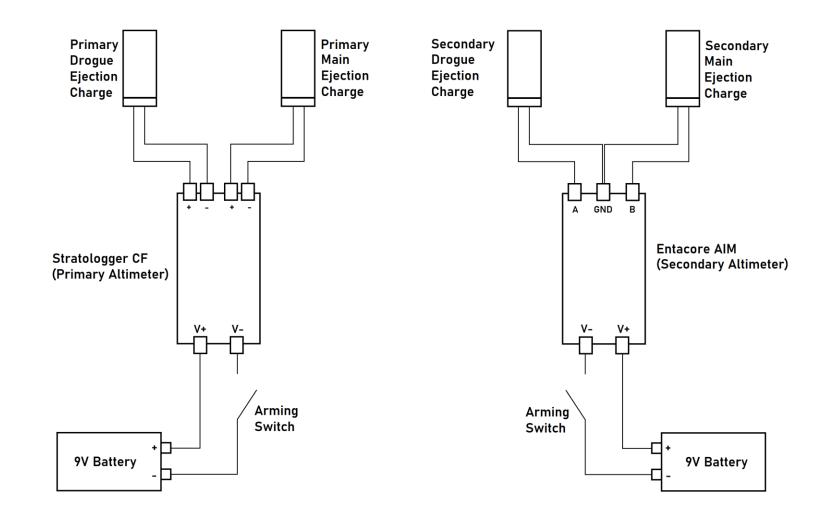

First Separation Event

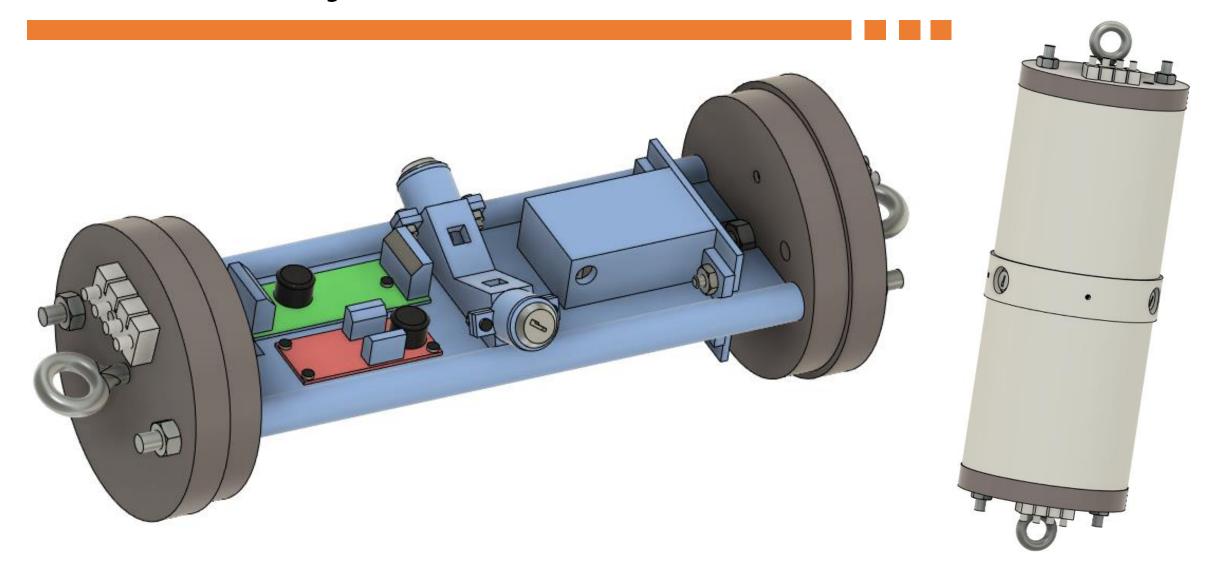

Component Type	Component Name	Location	Descent Rate (ft/s)
Drogue Parachute	24" Rocketman Standard	Central Airframe	80.1
Aft Recovery Harness	Fruity Chutes 5/8" Kevlar, 24 ft long	Central Airframe	N/A

Second Separation Event

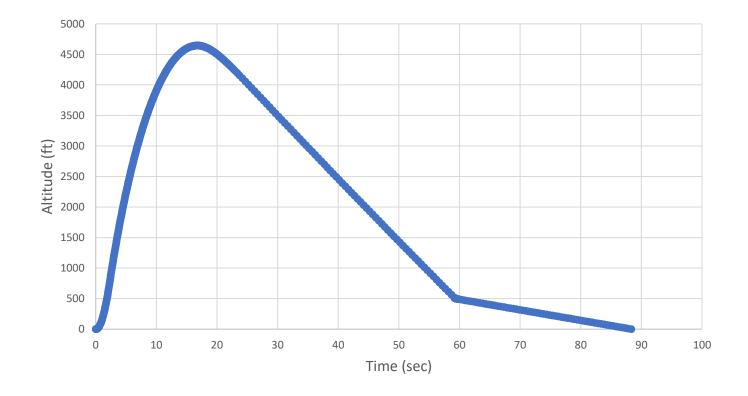

Component Type	Component Name	Location	Descent Rate (ft/s)
Main Parachute	72" Fruity Chutes Iris Ultra	Forward Airframe	17.2
Forward Recovery Harness	Fruity Chutes 5/8" Kevlar, 24 ft long	Forward Airframe	N/A

Selected Altimeters and GPS

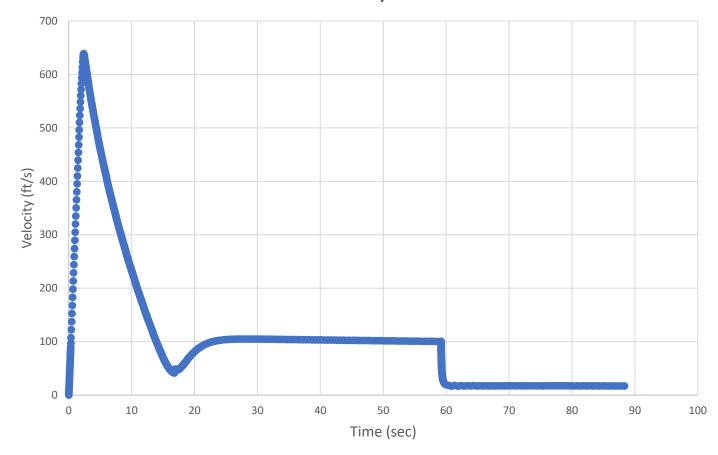

Component Type	Component Name	Location
Primary Altimeter	Stratologger CF	Avionics Bay
Secondary Altimeter	Entacore AIM	Avionics Bay
GPS	Big Red Bee 900	Nosecone



Altimeter Wiring Diagrams


Avionics Bay

Official Target Apogee- 4600 ft


 Simulated Altitude based on 5 mph simulation: 4644 ft

Altitude vs Time

- Velocity Off-the-Rail: 86.3 ft/s
- Maximum Velocity: 636 ft/s
- Maximum Mach #: 0.58
- Ground-Hit Velocity: 17.1 ft/s

Total Velocity vs Time

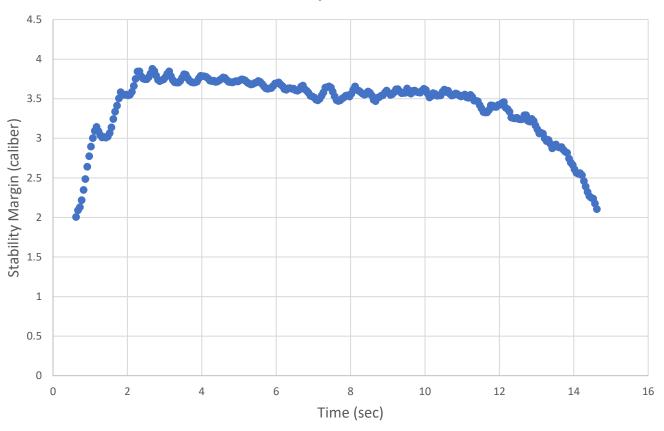
Maximum Acceleration: 305 ft/s^2

Total Acceleration vs Time

Descent Times from Equation						
Drogue Descent Time (s)	49.9					
Main Descent Time (s)	34.9					
Total Descent Time (s)	84.8					

Descent Times from OpenRocket Simulations						
Total Flight Time (s)	99.5					
Time to Apogee (s)	16.8					
Total Descent Time (s)	82.7					

Drift from Equation								
Wind Speed (mph)	Total Drift (ft)	Drogue Drift (ft)	Main Drift (ft)					
5	622.02	366.21	255.81					
10	1244.05	732.42	511.63					
15	1866.07	1098.63	767.44					
20	2488.10	1464.84	1023.26					


Drift from OpenRocket Simulations						
Wind Speed (mph)	Total Drift (ft)					
5	596.1					
10	1163.7					
15	1696.3					
20	2270.4					

Kinetic Energy at Ground Hit fo	rom Equation
Forward Section (ft-lb)	25.35
Central Section (ft-lb)	21.27
Aft Section (ft-lb)	58.08

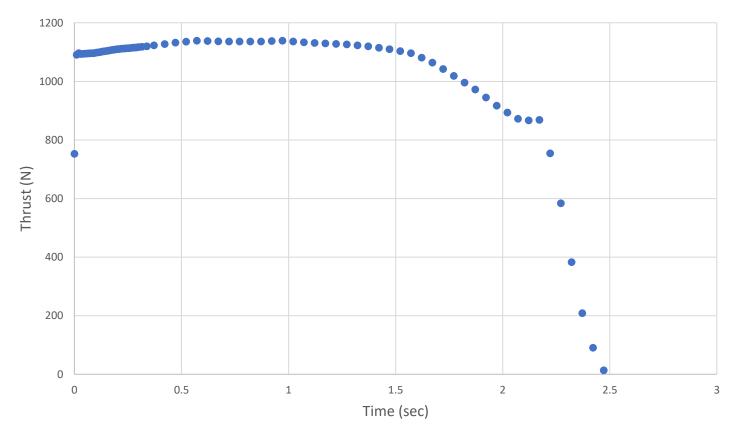
Static Stability

- Static Stability at the Launch Pad- 2.62
- Static Stability at Rail Exit- 2.73
- Maximum Static Stability- 3.75

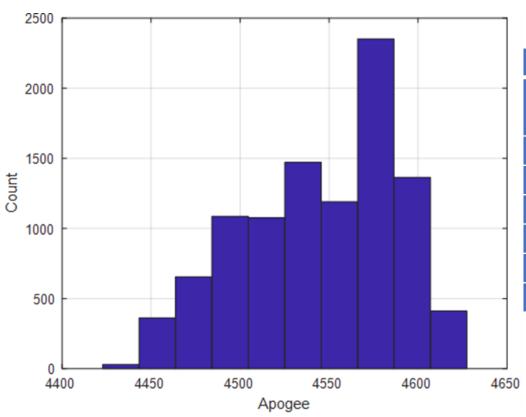
Stability vs Time

Preliminary Motor Selection

Motor: Aerotech K1000

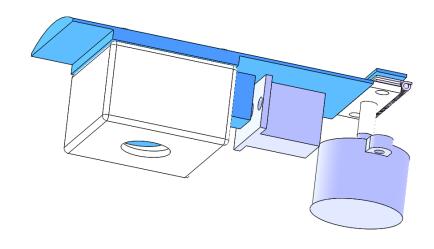

Propellant Mass: 1234 g

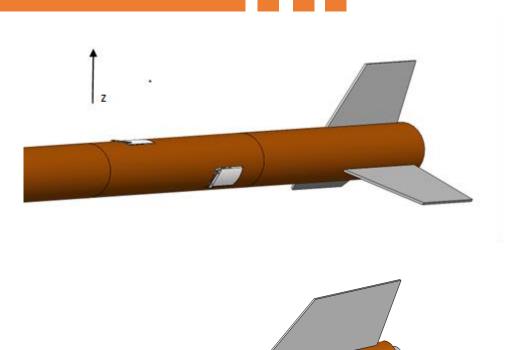
• Impulse: 2512 Ns


Maximum Thrust: 1674 N

Thrust to Weight Ratio: 9.04:1

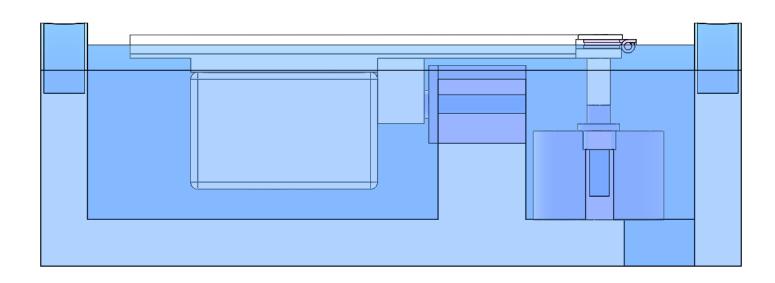
Aerotech K1000: Thrust vs Time

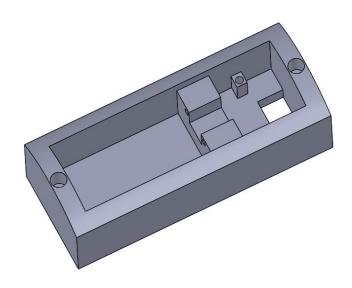

Monte Carlo Simulations: Altitude



	Monte Carlo Simulation: Altitude									
Launch	Wind	Probability	Predicted Average							
Angle	Condition	Weight	Altitude (ft)							
0	0 mph	5%	4670							
5 deg	5 mph	10%	4646							
5 deg	10 mph	70%	4620							
10 deg	15 mph	10%	4459							
10 deg	20 mph	5%	4444							
M	ost Probable A	ltitude	4600 ft							

Payload Design Overview


- Detect launch & landing by IMU and Barometer
- Unlock camera facing up by IMU data (one will always face up)
- Receive commands from SDR dongle
- Rotate camera by using stepper motor

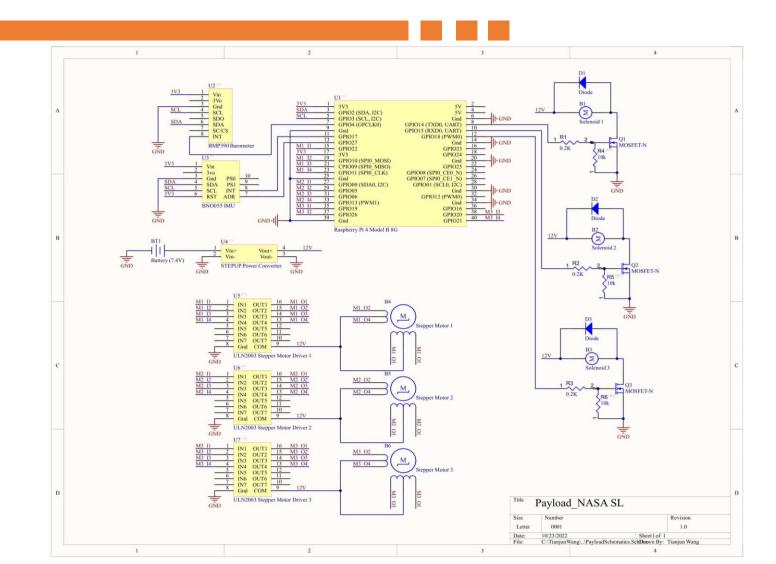


Payload Retention System

The payload is enclosed by housing that is screwed on to the airframe with threaded inserts.

Preliminary Payload Electronic Design

Microprocessor


Raspberry Pi 4 8GB RAM

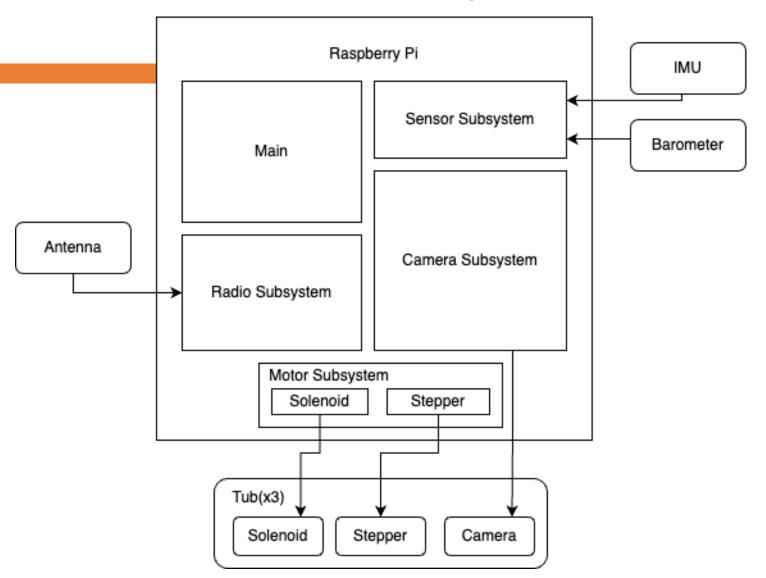
Sensors

- BNO055 IMU (launch & orientation)
- BMP390 Barometer (redundancy)
- 8MP USB2.0 FOV150 Cameras
- SDR Dongle

Actuators

- 4.5mm Stroke Solenoids
- 28BYJ-48 Stepper Motors
- Separate Power Supply

Preliminary Payload Software Design


All payload operations will be controlled by the primary payload computer.

Flight Computer: Raspberry Pl

Software System Inputs: Radio (Antenna), IMU, Barometer

Software System Outputs: Solenoid, Stepper Motor, Camera

Four Software Subsystems: Sensor, Radio, Camera, Motor

Personnel Hazards Analysis

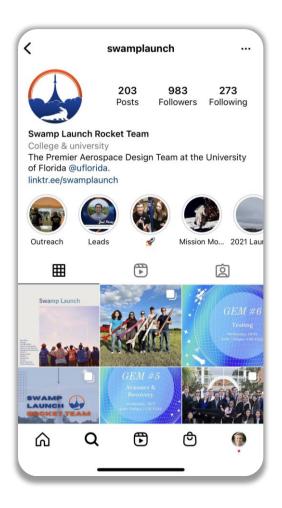
	Severity (S)	Likelihood (L)
	Little to no equipment damage/very minor or no injury	1-20% occurrence, very unlikely
3, 4	Minor equipment damage/minor injury	21-40% occurrence, unlikely
5, 6	Moderate equipment damage/mild injury	41-60% occurrence, uncertain likelihood
7, 8	Major equipment damage/mild to major injury	61-80% occurrence, likely
	Irreparable equipment damage/major injury or death of personnel	81-100% occurrence, very likely

	Likelihood										
		1	2	3	4	5	6	7	8	9	10
	1	1	2	3	4	5	6	7	8	9	10
	2	2	4	6	8	10	12	14	16	18	20
	3	3	6	9	12	15	18	21	24	27	30
	4	4	8	12	16	20	24	28	32	36	40
Severity	5	5	10	15	20	25	30	35	40	45	50
	6	6	12	18	24	30	36	42	48	54	60
	7	7	14	21	28	35	42	49	56	63	70
	8	8	16	24	32	40	48	56	64	72	80
	9	9	18	27	36	45	54	63	72	81	90
	10	10	20	30	40	50	60	70	80	90	100

Hazard	Cause	Effect	S	L	Score	Mitigation Strategy
All-purpose	Exposure to	Dizziness	5	1	5	Use of PPE per MSDS in well-
cement contact	fumes					ventilated areas
All-purpose	Liquid form	Burns, inhalation	8	2	16	Keep in well-ventilated, cool
cement ignites	exposed to heat	of smoke				storage. Keep away from heat
	source					sources/oxidizers
Cleaning agent	Use of cleaning	Irritation,	4	4	16	Use of PPE per MSDS
contact	agents	possible				
		blindness if				
		sprayed in eyes				
Epoxy contacts	Exposure of skin	Skin irritation	5	6	30	Use of PPE per MSDS when
skin	to epoxy					handling epoxy
Gelcoat	Liquid form	Burns ranging	9	2	18	Keep in well-ventilated, cool
compound	exposed to heat	from 1 st to 3 rd				storage. Keep away from heat
ignites	source	degree, smoke				sources/oxidizers
		inhalation				
Gelcoat fume	Prolonged toxic	Dizziness	4	1	4	Use of PPE per MSDS in well-
inhalation	fume exposure					ventilated areas
Paint thinner	Spills, accidental	Irritation,	7	1	7	Use of PPE per MSDS. Keep lid
contact	touch with bare	possible				closed when not in use
	skin	blindness if				
		sprayed in eyes				
Paint thinner	Liquid form	Burns ranging	9	2	18	Keep in well-ventilated, cool
ignites	exposed to heat	from 1st to 3rd				storage. Keep away from heat
	source	degree, smoke				sources/oxidizers
		inhalation				
Spray paint can	Compressed gas	Hearing damage	9	1	9	Use of PPE per MSDS, keep
explodes	in paint can	and lacerations				spray paint can away from heat
	exposed to heat	or organ damage				sources
		from debris				

Failure Modes and Effects Analysis

	Severity (S)	Likelihood (L)	Detection (D)
-	Little to no effect on flight/little to no equipment damage		81-100% detection chance, very likely detection
	Slight effect on flight/minor equipment damage	· · ·	61-80% detection chance, likely detection
	Moderate effect on flight/moderate equipment damage		41-60% detection chance, uncertain detection
_	Major effect on flight/major equipment damage	l ' '	21-40% detection chance, unlikely detection
-	Complete vehicle loss/irreparable equipment damage	81-100% occurrence, very likely	1-20% detection chance, very unlikely detection


RPN Score

1-100 101-200 201-300 301-400 401-500 501-600 601-700 701-800 801-900	1-100	101-200	201-300	301-400	401-500	501-600	601-700	701-800	801-900	901+
--	-------	---------	---------	---------	---------	---------	---------	---------	---------	------

Component	Function	Failure Mode	Failure Cause		Failure Effect	'S	S1	L²	D,	RPN*	Corrective Actions
				Local Effects	Next Higher Level	System Effects					
Propellant	Generates thrust to propel the rocket.	Propellant Failure	Grain Defects, Improper storage, Water Damage.	Improper propellant burn.	Abrupt changes in thrust.	The launch vehicle has unpredictable trajectory/flight, or the rocket doesn't take off. Additional risks of over pressuring.		3	4	108	Ensure the integrity of the propellant grains by visually checking for defects. Store motors in a Climate Regulated room, and handle with care.
Nozzle	mass flow rate of the propellant burn.	Nozzle Deformation	Structural failure of the nozzle.	The nozzle exit area, nozzle exhaust pressure, and the mass flow rate change.	changes in the thrust vector, and impulse.	The launch vehicle has an altered trajectory creating potential danger to bystanders	9	3	5	135	Ensure defects are not present on the nozzle by visually checking for them. Always handle the nozzle with care.
Motor Case (including the forward and aft closures)	Encloses the propellant grain and maintains pressure.	Case Deformation	Structural failure of the motor case including the forward or aft enclosures.	interacts with	Motor assembly is damaged, and integrity of the motor and launch vehicle are compromised.		7	2	8	112	Ensure the integrity of the case by visually inspecting for defects. Always handle the motor case with care, and always have a protective cover over the casing until launch.
Motor Tube	Encloses the motor assembly in the correct position.	Motor Tube is dislodged.	Structural failure of the motor tube.	The motor case is not held in the correct position.	case forced through the launch vehicle, and misaligned thrust vector.	The launch vehicle is damaged, and the flight trajectory is altered.		3	6		Ensure the alignment of the tube by visually inspecting for defects. Always handle the motor tube with care.
Motor Retainer	Retains the motor inside the rocket.	Motor Retainer cracks or breaks.	Structural failure of the motor retainer or unfastened screws.	The motor case assembly is not held in place.	case assembly forced through the	The launch vehicle is damaged, and the motor's function is lost.		4	7	196	Ensure the motor is retained by tightening the screws.
Thrust Plate	Transfers the thrust from through the centering rings and to the airframe.	Thrust Plate cracks or breaks.	Structural failure of the thrust plate.	The integrity of the centering rings and the airframe are compromised.		The launch vehicle is damaged, and the flight trajectory is altered.	5	4	7	140	Ensure the thrust plate is properly fastened by visually inspecting for defects. Always handle the thrust plate with care.

Requirements Compliance Plan – General & Safety

- General
 - Educational Engagement Sub-team
 - Social Media
- Safety
 - Safety Plan

Requirements Compliance Plan - Vehicle

Test ID	Title	Overview of Procedure	Rationale	Required Materials
LV-MS-1	Airframe Material Compression Test	Use Instron UTM to experimentally determine maximum compressive strength of a section of airframe.	Ensure that airframe material is capable of withstanding compressive forces during flight and landing.	Instron UTM, airframe material sample
LV-MS-2	Fin Material Bend Test	Use Instron UTM to experimentally determine maximum flexural strength of a sample of fin material through a four-point flexural test.	Ensure fin material is capable of withstanding forces from ground impact upon landing.	Instron UTM, fin material sample
LV-MS-3	Bulkhead Material Strength Test	Use Instron UTM to experimentally determine maximum tensile strength of bulkhead and eyebolt assembly.	Ensure bulkhead assembly is capable of withstanding force of parachute ejection	Instron UTM, bulkhead material, eyebolt
LV-MS-4	Epoxy Strength Test	Use Instron UTM to experimentally determine maximum shear strength of epoxy through a lap shear test.	Ensure epoxy is capable of withstanding forces of vehicle operation.	Instron UTM, epoxy, material sample
LV-MS-5	Recovery Harness Knot Efficiency Test	Use Instron UTM to experimentally determine the efficiency of several knots used to secure recovery harness to eyebolts.	Ensure recovery harness attachments are capable of withstanding force of parachute ejection.	Instron UTM, recovery harness material sampl
LV-MS-6	Recovery Harness Material Strength Test	Use Instron UTM to experimentally determine maximum yield strength of recovery harness material.	Ensure recovery harness material is capable of withstanding force of parachute ejection.	Instron UTM, recovery harness material sampl
LV-MS-7	Airframe Material Impact Resistance Test	Drop section of airframe from a height that simulates flight recovery conditions.	Ensure airframe is capable of withstanding forces during vehicle recovery.	Airframe material sample
LV-MS-8	Bulkhead Impact Resistance Test	Drop a bulkhead attached to a weighted airframe from a height that simulates flight recovery conditions.	Ensure bulkheads are capable of withstanding forces during vehicle recovery.	Airframe material sample, bulkhead

NASA

- Design
 - Motor choice
 - Vehicle prohibitions
- Simulations
 - Apogee
 - Stability
- Testing
 - Idle time
 - Launch preparation

Team

- Testing
 - Payload compressive strength

Requirements Compliance Plan - Recovery

6.2.1 Vehicle Testing Plan

Test ID	Title	Overview of Procedure	Rationale	Required Materials
LV-MS-1	Airframe Material Compression Test	Use Instron UTM to experimentally determine maximum compressive strength of a section of airframe.	Ensure that airframe material is capable of withstanding compressive forces during flight and landing.	Instron UTM, airframe material sample
LV-MS-2	Fin Material Bend Test	Use Instron UTM to experimentally determine maximum flexural strength of a sample of fin material through a four-point flexural test.	Ensure fin material is capable of withstanding forces from ground impact upon landing.	Instron UTM, fin material sample
LV-MS-3	Bulkhead Material Strength Test	Use Instron UTM to experimentally determine maximum tensile strength of bulkhead and eyebolt assembly.	Ensure bulkhead assembly is capable of withstanding force of parachute ejection	Instron UTM, bulkhead material, eyebolt
LV-MS-4	Epoxy Strength Test	Use Instron UTM to experimentally determine maximum shear strength of epoxy through a lap shear test.	Ensure epoxy is capable of withstanding forces of vehicle operation.	Instron UTM, epoxy, material sample
LV-MS-5	Recovery Harness Knot Efficiency Test	Use Instron UTM to experimentally determine the efficiency of several knots used to secure recovery harness to eyebolts.	Ensure recovery harness attachments are capable of withstanding force of parachute ejection.	Instron UTM, recovery harness material sample
LV-MS-6	Recovery Harness Material Strength Test	Use Instron UTM to experimentally determine maximum yield strength of recovery harness material.	Ensure recovery harness material is capable of withstanding force of parachute ejection.	Instron UTM, recovery harness material sample
LV-MS-7	Airframe Material Impact Resistance Test	Drop section of airframe from a height that simulates flight recovery conditions.	Ensure airframe is capable of withstanding forces during vehicle recovery.	Airframe material sample
LV-MS-8	Bulkhead Impact Resistance Test	Drop a bulkhead attached to a weighted airframe from a height that simulates flight recovery conditions.	Ensure bulkheads are capable of withstanding forces during vehicle recovery.	Airframe material sample, bulkhead

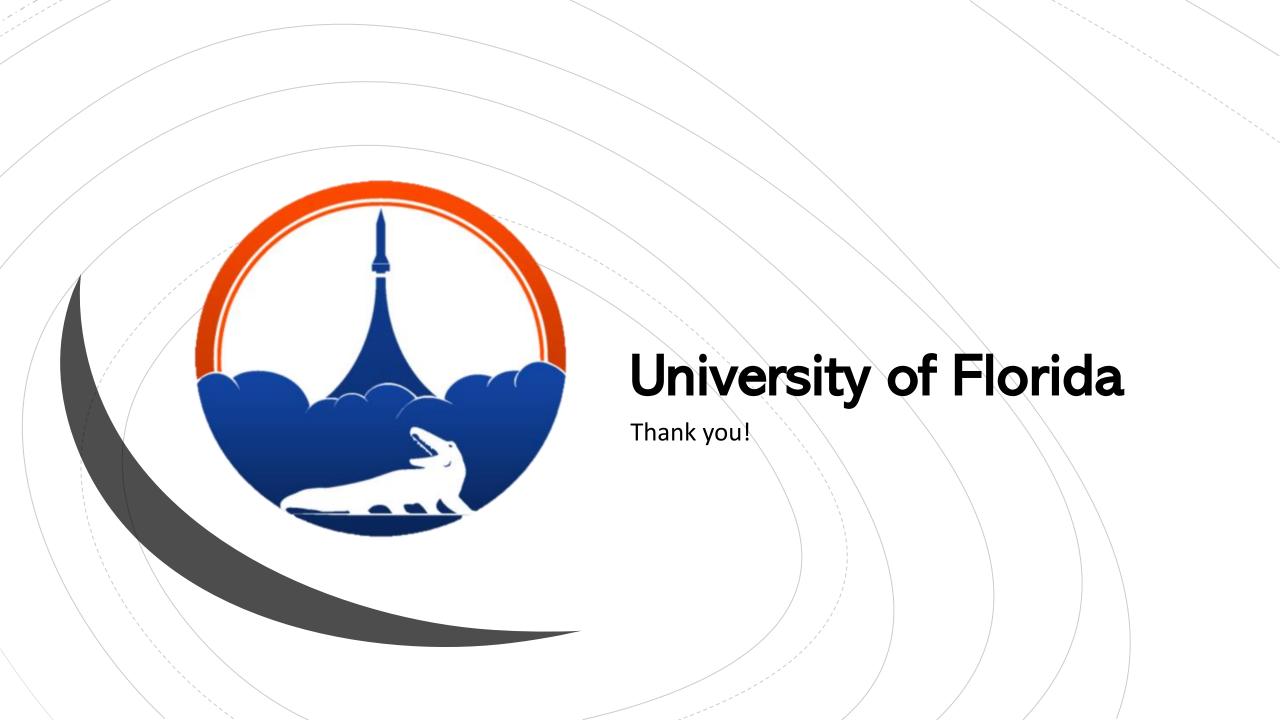
NASA

- Design
 - Separate avionics bay
 - Electronics selection
- Testing
 - Parachute drag
 - Altimeter accuracy
 - Ejections
 - Interference

Team

- Simulations
 - Descent rate
- Design
 - Recovery harness
- Testing
 - Parachute packing

Requirements Compliance Plan - Payload


NASA

- Design
 - Camera selection
- Testing
 - Radio testing
 - Software unit testing

Team

- Testing
 - Acceleration
 - Landing detection
 - Camera arm
 - Battery life

P-CF-1	Raspberry Pi Functionality Demonstration	Overview of Procedure Connect keyboard, mouse, and monitor to Raspberry Pi and confirm that it is fully functional.	Rationale Ensure Raspberry Pi can run necessary commands.	Required Materials Raspberry Pi, laptop	
P-CF-2	Camera Functionality Demonstration	Instruct camera to take a photo.	Ensure camera is responsive to commands.	Camera, Raspberry Pi, software	
P-CF-3 Radio Reception Test		Transmit radio instructions to payload receiver and determine if instructions were received.	Ensure payload can successfully receive transmissions.	Radio, Raspberry Pi	
P-CF-4	Image Manipulation Software Unit Test	Manipulate images in required ways (rotate, apply filters) using software.	Ensure payload software can execute required image manipulation commands.	Payload software	
P-CF-5	Latch Release Test	Instruct solenoid to release the latch securing the camera assembly inside the payload.	Ensure solenoid is responsive to software commands and has sufficient power to release latch.	Latch assembly, Raspberry Pi, software	
P-CF-6	Camera Rotation Test	Instruct motor to rotate camera around z-axis through software.	Ensure that camera can be rotated through software commands.	Camera assembly, Raspberry Pi, software	
P-CF-7	Camera Deployment Test	Initiate camera deployment through software commands.	Ensure that camera can be successfully deployed from the payload housing.	Payload assembly	
P-CF-8	IMU Accuracy Test	Record IMU readings for several acceleration scenarios and compare to correct values.	Ensure IMU yields accurate readings for use by payload systems.	IMU	
P-SI-1	Raspberry Pi Camera Integration Test	Perform multiple commands on Raspberry Pi to take photos using cameras.	Ensure that Raspberry Pi can interface with the cameras.	Cameras, Raspberry Pi	

